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Abstract [338] The goal of this paper is to suggest the numerical method for the simulation of 
impulsive sound generation and to investigate the acoustic field produced by a projectile discharging 
from a muzzle. For this problem, a direct simulation using the conventional flow computation method 
is performed to obtain the acoustic source information in near-field. Computed unsteady flow results 
are used to obtain the solutions in far-field. Hybrid method using the flow results computed in near-
field boundary region combined with an integral formulation to evaluate the radiated noise in far-field 
is suggested. First, a numerical study on wave dynamic procedure occurring in muzzle flows, which 
are made by a supersonic projectile released from the open end of a tube into ambient air condition, is 
implemented. From numerical simulation in near-field, such complex phenomena, including blast 
waves, jet flows, shock waves and their interactions in the muzzle blast, are described. Second, the 
Euler equations assuming axi-symmetric flows, which are able to ensure the non-linear effects while 
propagating outward and to simulate the near/far-field acoustic propagation, are applied for impulsive 
sound propagation resulting from complex muzzle blast through the unsteady flow results computed 
above. This numerical method is efficient and powerful computation tool to extend impulsive sound 
prediction near-field to the very far-field.  
  

1 INTRODUCTION 

 A variety of military gun propulsion systems have been investigated and developed including 
those that utilize advanced solid propellant configurations[1,2]. Upon ignition and burning, the solid 
propellant in these systems takes on a highly complex structure that includes the dynamics of 
propellant combustion and various multiphase flow phenomena. The numerical study of such 
aeroacoustic problems places stringent demands on the choice of a computational algorithm, 
because it requires the ability to propagate disturbances of small amplitude and short waves. The 
demands are particularly high when shock waves are involved, because the chosen algorithm must 
also resolve discontinuities in the solution with a stiff source. The extent to which a high-order-
accurate shock capturing method in multiphase reacting flows can be relied upon for aeroacoustics 
applications that involve the interaction of shocks with other waves has not been previously 
quantified[3,4]. The numerical methodology in obtaining a globally high-order-accurate solution in 
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such a case with a shock-capturing method is demonstrated through the study of a simplified model 
problem.  
 The objective of current study is to develop a numerical technique for noise prediction generated 
through muzzle blast and to evaluate the utility of computational models in the design of large-scale 
propellant systems. Especially, it is required to develop a numerical technique with minimum errors 
of dispersion and dissipation for aeroacoustic applications such as muzzle blast with a supersonic 
projectile. A direct application of classical DRP(dispersion-relation-preserving) methodology[5] to 
the finite volume formulation in case of simulation of unsteady base flow in computational region is 
difficult since DRP scheme with the central differencing approach tries to model spatial derivatives 
as accurately as possible. Especially, the proposed approach must guarantee highly interacting 
complex flow information such as muzzle blast and propulsion. As the first stage of all processes, 
the accurate unsteady base flow is computed in use of high-order dispersion relation based CFD 
methodology briefly introduced in Section 2.2. The current simulations correctly capture both the 
levels and nonlinear characteristics of the discontinuous acoustic signals.  
 Section 2 represents technical approaches to obtain the unsteady base flow results with highly 
interacting complex flow phenomena. In Section 3, numerical simulation in near-field is 
implemented with proposed numerical methodology to get unsteady base flow and numerical 
computation in far-field is carried out by using the computed results in Section 2.  
 

2 TECHNICAL APPROACHES  

2.1 Governing Equations 

 The governing equations are written in two dimensions for the sake of simplicity. Assuming that 
the effects of viscosity and chemical reaction in the present study are negligible, a dimensionless 
conservation form of the unsteady Euler equations of a perfect gas can be written in this form.   
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 The conservative flow variable vector Q, the source term vector S and the flux vectors in the 
streamwise and radial directions, F and G, are given by 
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 where primitive variables in the vector Q are density ρ , velocity components u  and v , the fluid 
pressure p , respectively. The total energy per unit volume, e , is given by  

)()1/( 22
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 In the current implementation, these equations are solved in generalized cartesian coordinates in 
conservative form to treat the moving boundary of projectile moving body. 

2.2 Spatial Discretization 

 In these equations, flux vector splitting is utilized with the use of numerical approach suggested 
in previous paper[6]. In order to achieve high spatial accuracy in a finite volume scheme, high-order 
interpolation formulas for each component of the vector jQ  are used as follows.  
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where )3,2,1(),( =kw kRL  and variables at cell interface, opRL
jQ ),(

2/1− , are the weighting coefficients and a 

linear combination of function kRL
jQ ),(

2/1−  to be more than fourth-order accurate, respectively. All 
coefficients are determined on condition that the dispersion relation is maintained in all space and 
for all time. 
 Taking the Fourier transform of both sides of Eq.(4) yields 
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 It is desirable to ensure that the Fourier transform of the finite difference is a good approximation 
to the partial derivative over the range of wave numbers of interest. Therefore such purpose can be 
achieved by minimizing the integrated error E , defined by the following: 
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 As a result, the coefficients used in obtaining unsteady flow results are constructed to minimize 
the truncation error in the wavenumber space with less grid points per wavenumber and biased 
stencils for discontinuities. For the simulation of impulsive sound generation and propagation, the 
base flow values computed here are combined with acoustic perturbation equations to show 
acoustic source characteristics and sound propagation. 

2.3 Dual-Time-Stepping Algorithm 

 In order to treat the moving boundary of projectile moving body in muzzle, a dual time stepping 
algorithm is used in the current research. This algorithm was introduced by Jameson[7] for 
calculations of unsteady flows past airfoils and wings.  
 To carry out the iterations at each physical time step, an artificial time term,τ , is introduced like 
this.  
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 It is possible to treat the discretization in space and time separately by re-writing Eq.(9) as 
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where )(QR  is the residual which includes the convective and the source fluxes. Once the artificial 
steady state is reached, the derivative of Q with respect to τ  becomes zero, and the original 
unsteady Euler Equations are recovered. Therefore, instead of solving each time step in the physical 
time domain, the problem is transformed into a sequence of steady-state computations in the 
artificial time domain.  
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 In the current implementation, the time derivatives with respect to the physical time, t, are 
discretized with a three-point backward differencing formula. This results in an implicit linear 
multi-step method that is second-order accurate in time. 
 Descretizing Eq.(10) with first order finite difference for artificial time and second order 
backward difference for the physical time terms results in  
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 Here, k  is the pseudo-iteration number, n  is the physical time step number and )(QR  denotes 
the residual vector, respectively. 

2.4 Description of Initial and Moving Boundary Condition 

 The properties of the gas at the muzzle can be obtained by using the Rankine-Hugoniot relations 
under the assumption that the gas velocity is equal to the projectile launch speed. Schmidt et al[2] 
carried out their theoretical analysis based on this assumption and have shown that the obtained 
results agreed well with experiments. Considering of the friction between the projectile object and 
the shock tube wall, we simplify initial conditions for numerical simulations as follows. In the 
initial stage, with the projectile moving down the shock tube, the precursor shock wave is 
considered as having arrived at the exit of the shock tube and the projectile object is located behind 
the precursor shock wave at a certain distance that is determined with the projectile release time.  
 The ambient condition outside of the shock tube is ambient air at 1=airp and KTair 297= . Behind 
the precursor shock wave, the properties of gas on either side of the projectile and the projectile 
itself all move at the same velocity, i.e., the post-shock velocity, pV . Using the assumption of the 
projectile speed and the ambient air condition, the initial flow condition between the precursor 
shock wave and the projectile can be determined using adiabatic shock relations. For the initial flow 
state behind the projectile body, it is assumed that the friction force acting on the projectile body is 
proportional to the projectile surface area in contact with the tube wall and the driving force acting 
on the projectile body is sufficient to overcome the friction and drag force to keep the projectile 
move at a constant speed while the projectile is moving inside the shock tube. The friction in nature 
may vary case by case in experiments, but this assumption denotes the fact that the bigger friction 
force will induce stronger second blast waves. According to the assumption, the state behind the 
projectile can be calculated from the pressure, bp , by using the Poisson’s adiabatic equation for a 
perfect gas providing that the gas behind the projectile body is compressed adiabatically from the 
gas state in front of the projectile to the pressure, bp . The pressure behind the projectile, bp , will be 
taken as 1.5 sp , where sp is the post-shock pressure ahead of the projectile.  
 In order to simulate a moving projectile, it is assumed that the projectile is moving in the fixed 
main mesh system so that the moving boundary conditions consistent with the Euler equations can 
be applied on the surfaces of the projectile. At each time step, the mirror-image flow values within 
the boundary are determined according to the moving surface with the moving speed of pV .     

,outin ρρ =  ,outin pp =  ,2 outpin uVu −×=  outin vv =                                  (12) 
 Here, ininin vu ,,ρ and inp denote the values within the boundary whereas outoutout vu ,,ρ and 

outp represent the values in the flow field. This results in the surface of the projectile behaving like a 
moving solid wall. Three-columns of interpolated boundary are used to ensure accuracy of the 
numerical scheme.  
 Nonreflecting boundary conditions are applied at the inflow, outflow and upper boundaries to 
minimize effects of nonphysical wave reflection nearby the boundary. Axi-symmetric boundary 
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condition is applied at lower boundary. Numerical simulations are carried out on an equally spaced 
grid of 250600×  mesh points. The inner diameter of the shock tube is regarded as a reference 
length and 50 mesh points are used along the radius for all of the cases. 
 

3 NUMERICAL RESULTS 

3.1 Validation of Numerical Results 

 The first case treated is for the diffraction of a shock wave discharged from a shock tube into air 
for a shock Mach number of M=2.4 and its computational domain is similar to the present study but 
without a projectile. The figures show the experimental result[8] on the left in Figure 1 and the 
numerical one on the right in Figure 1. It can be seen from the comparison that the agreement 
between computational and experimental results is good.  
 

                                    
aa..  eexxppeerriimmeennttaall  rreessuullttss                                                                                bb..  nnuummeerriiccaall  rreessuullttss  

Figure 1:  shadowgraph of the first precursor flowfield taken immediately after precursor flow ejection  
 

3.2 Numerical Simulation of Wave Dynamics in Near-field 

 In order to compute the near field flow a compressible finite volume unsteady Euler solver is 
used mentioned earlier. The code uses an implicit solver in time with approximate factorization and 
dual time stepping method for physical timestep, and is high-order accurate in space through the use 
of biased upwind differencing with dispersion relation.  
 

 
Figure 2: The density distribution of the muzzle blast at the projectile speed of M=2.0 
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 Using the same algorithm described earlier[6], we have simulated the impulsive wave dynamics 
in a propellant muzzle system numerically. Figure 2 shows the instantaneous density contour of a 
projectile Mach number 2.0. From the contour, we observe the impulsive first and second blast 
waves propagating omni-directionally and complex waves propagating on lateral direction. By the 
interaction between the projectile moving body and the complex shock structures resulting from 
under-expanded jet phenomena, there exist density fluctuations and impulsive sound waves 
generated by the interaction of shock, rigid body and spherical vortex. 
 In muzzle blast problems, acoustic field and large-scale flow field must be solved simultaneously 
to resolve interaction between shock and vortex or acoustic waves in near field. This high order 
numerical approach can guarantee the propagation of acoustic variables in the far-field as well as 
implement large scale interaction between shocks and acoustic waves. In this figure, it is obvious 
that the numerical technique represents muzzle flow phenomena such as primary blast wave, shock 
structure and jet core flow in the near field. As mentioned above, this methodology ensures the 
small scale acoustic wave and flow/acoustic interaction. Therefore, it is reliable that the results in 
the far field will represent impulsive sounds. 
 

3.3 Numerical Simulation of Impulsive Wave in Far-field 

 Hybrid method with the flowfield computed in near-field is used to evaluate the far-field 
impulsive sounds. High-order and high-resolution numerical schemes are applied to the present 
computation in a structured grid system. Explicit DRP(dispersion-relation-preserving) finite 
difference scheme[9] is used for evaluating the flux derivatives and an optimized four-step Adams-
Bashforth method is used for integrating the governing equations in time. The nonlinear artificial 
dissipation model by Jameson is also used to remove unwanted numerical oscillations. Radiation 
boundary conditions[10] are used in the present computation and incoming boundary condition in 
matching region which is based on incoming and outgoing wave characteristics is used as shown in 
Figure 3. Incoming wave characteristics are given by previous nearfield computations. Inner 
domain shows the source region in near-field whereas outer domain shows the propagation region 
in far-field at instantaneous given time. 
 

Figure 3: Computational domain and boundary conditions in near- and far- field 
 
 Impulsive sound waves are also simulated with the help of the computational 
aeroacoustics(CAA) scheme. The source information calculated in this process can be used to 
predict the sound pressure levels in the far-field with combining acoustic perturbation equations 
with non-linear terms.  
 Figure 4 shows the comparison between the results of near-field compuatation with dispersion 
relation based CFD method[6] and those of far-field computation with CAA method. In this figure, 
there are good agreements between the pressure contours, especially same propagation speed in 

)250600(512 gridsDD ××

)200300(812 gridsDD ××
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matching region. As a result, this hybrid methodology can guarantee the propagation of acoustic 
variables in the far-field as well as implement large scale interactions between shocks and waves. 
Particularly, it can be easily combined with traditional RANS, LES or DNS to identify acoustic 
sources in near field. 

 
Figure 4: Comparison between the results of farfield compuatation with CAA method 

 and those of nearfield computation with CFD 
 

 And so, it has the potential to make significant impact on aeroacoustics research and 
development such as impulsive sound generation and propagation problems. 
 

4 CONCLUSION 

 In this paper a highly effective numerical technique has been developed for simulating multi-
scale aeroacoustic problems where impulsive sound is generated or nonlinear effects are dominant. 
This hybrid methodology can guarantee the propagation of acoustic variables in the far-field as well 
as implement large scale interaction between shocks and waves. The numerical technique has been 
validated through several problems and applied in muzzle blast problems with projectile speed, i.e., 
M=2. This method can be easily combined with traditional RANS, LES or DNS to identify acoustic 
sources in near field. Therefore, it has the potential to make significant impact on aeroacoustics 
research and development such as impulsive sound generation and propagation problems. Further 
research is to apply them to 2- and 3- dimensional Euler/Navier-stokes equations for accurate noise 
prediction of muzzle blast. 
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